Back to course overview

K-Means Clustering in Python - ML From Scratch 12

In this Machine Learning from Scratch Tutorial, we are going to implement a K-Means algorithm using only built-in Python modules and numpy. We will also learn about the concept and the math behind this popular ML algorithm.

All algorithms from this course can be found on GitHub together with example tests.


import numpy as np import matplotlib.pyplot as plt np.random.seed(42) def euclidean_distance(x1, x2): return np.sqrt(np.sum((x1 - x2)**2)) class KMeans(): def __init__(self, K=5, max_iters=100, plot_steps=False): self.K = K self.max_iters = max_iters self.plot_steps = plot_steps # list of sample indices for each cluster self.clusters = [[] for _ in range(self.K)] # the centers (mean feature vector) for each cluster self.centroids = [] def predict(self, X): self.X = X self.n_samples, self.n_features = X.shape # initialize random_sample_idxs = np.random.choice(self.n_samples, self.K, replace=False) self.centroids = [self.X[idx] for idx in random_sample_idxs] # Optimize clusters for _ in range(self.max_iters): # Assign samples to closest centroids (create clusters) self.clusters = self._create_clusters(self.centroids) if self.plot_steps: self.plot() # Calculate new centroids from the clusters centroids_old = self.centroids self.centroids = self._get_centroids(self.clusters) # check if clusters have changed if self._is_converged(centroids_old, self.centroids): break if self.plot_steps: self.plot() # Classify samples as the index of their clusters return self._get_cluster_labels(self.clusters) def _get_cluster_labels(self, clusters): # each sample will get the label of the cluster it was assigned to labels = np.empty(self.n_samples) for cluster_idx, cluster in enumerate(clusters): for sample_index in cluster: labels[sample_index] = cluster_idx return labels def _create_clusters(self, centroids): # Assign the samples to the closest centroids to create clusters clusters = [[] for _ in range(self.K)] for idx, sample in enumerate(self.X): centroid_idx = self._closest_centroid(sample, centroids) clusters[centroid_idx].append(idx) return clusters def _closest_centroid(self, sample, centroids): # distance of the current sample to each centroid distances = [euclidean_distance(sample, point) for point in centroids] closest_index = np.argmin(distances) return closest_index def _get_centroids(self, clusters): # assign mean value of clusters to centroids centroids = np.zeros((self.K, self.n_features)) for cluster_idx, cluster in enumerate(clusters): cluster_mean = np.mean(self.X[cluster], axis=0) centroids[cluster_idx] = cluster_mean return centroids def _is_converged(self, centroids_old, centroids): # distances between each old and new centroids, fol all centroids distances = [euclidean_distance(centroids_old[i], centroids[i]) for i in range(self.K)] return sum(distances) == 0 def plot(self): fig, ax = plt.subplots(figsize=(12, 8)) for i, index in enumerate(self.clusters): point = self.X[index].T ax.scatter(*point) for point in self.centroids: ax.scatter(*point, marker="x", color='black', linewidth=2)

FREE VS Code / PyCharm Extensions I Use

🪁 Code faster with Kite, AI-powered autocomplete: Link *

✅ Write cleaner code with Sourcery, instant refactoring suggestions: Link *

* These are affiliate links. By clicking on it you will not have any additional costs, instead you will support me and my project. Thank you! 🙏

Check out my Courses