Back to course overview

Linear Regression - PyTorch Beginner 07

Learn all the basics you need to get started with this deep learning framework! In this part we implement a logistic regression algorithm and apply all the concepts that we have learned so far:

All code from this course can be found on GitHub.

Linear Regression in PyTorch

import torch import torch.nn as nn import numpy as np from sklearn import datasets import matplotlib.pyplot as plt # 0) Prepare data X_numpy, y_numpy = datasets.make_regression(n_samples=100, n_features=1, noise=20, random_state=4) # cast to float Tensor X = torch.from_numpy(X_numpy.astype(np.float32)) y = torch.from_numpy(y_numpy.astype(np.float32)) y = y.view(y.shape[0], 1) n_samples, n_features = X.shape # 1) Model # Linear model f = wx + b input_size = n_features output_size = 1 model = nn.Linear(input_size, output_size) # 2) Loss and optimizer learning_rate = 0.01 criterion = nn.MSELoss() optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate) # 3) Training loop num_epochs = 100 for epoch in range(num_epochs): # Forward pass and loss y_predicted = model(X) loss = criterion(y_predicted, y) # Backward pass and update loss.backward() optimizer.step() # zero grad before new step optimizer.zero_grad() if (epoch+1) % 10 == 0: print(f'epoch: {epoch+1}, loss = {loss.item():.4f}') # Plot predicted = model(X).detach().numpy() plt.plot(X_numpy, y_numpy, 'ro') plt.plot(X_numpy, predicted, 'b') plt.show()

FREE VS Code / PyCharm Extensions I Use

🪁 Code faster with Kite, AI-powered autocomplete: Link *

✅ Write cleaner code with Sourcery, instant refactoring suggestions: Link *

* These are affiliate links. By clicking on it you will not have any additional costs, instead you will support me and my project. Thank you! 🙏

Check out my Courses