Skip to content

Transfer Learning - PyTorch Beginner 15

In this part we will learn about transfer learning and how this can be implemented in PyTorch.


Learn all the basics you need to get started with this deep learning framework! In this part we will learn about transfer learning and how this can be implemented in PyTorch.

We will learn: - What is Transfer Learning - Use the pretrained ResNet-18 model - Apply transfer learning to classify ants and bees - Exchange the last fully connected layer - Try 2 methods: Finetune the whole network or train only the last layer - Evaluate the results

All code from this course can be found on GitHub.

Transfer Learning in PyTorch

The dataset can be downloaded from the official PyTorch site here

import torch
import torch.nn as nn
import torch.optim as optim
from torch.optim import lr_scheduler
import numpy as np
import torchvision
from torchvision import datasets, models, transforms
import matplotlib.pyplot as plt
import time
import os
import copy

mean = np.array([0.5, 0.5, 0.5])
std = np.array([0.25, 0.25, 0.25])

data_transforms = {
    'train': transforms.Compose([
        transforms.RandomResizedCrop(224),
        transforms.RandomHorizontalFlip(),
        transforms.ToTensor(),
        transforms.Normalize(mean, std)
    ]),
    'val': transforms.Compose([
        transforms.Resize(256),
        transforms.CenterCrop(224),
        transforms.ToTensor(),
        transforms.Normalize(mean, std)
    ]),
}

data_dir = 'data/hymenoptera_data'
image_datasets = {x: datasets.ImageFolder(os.path.join(data_dir, x),
                                          data_transforms[x])
                  for x in ['train', 'val']}
dataloaders = {x: torch.utils.data.DataLoader(image_datasets[x], batch_size=4,
                                             shuffle=True, num_workers=0)
              for x in ['train', 'val']}
dataset_sizes = {x: len(image_datasets[x]) for x in ['train', 'val']}
class_names = image_datasets['train'].classes

device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
print(class_names)


def imshow(inp, title):
    """Imshow for Tensor."""
    inp = inp.numpy().transpose((1, 2, 0))
    inp = std * inp + mean
    inp = np.clip(inp, 0, 1)
    plt.imshow(inp)
    plt.title(title)
    plt.show()


# Get a batch of training data
inputs, classes = next(iter(dataloaders['train']))

# Make a grid from batch
out = torchvision.utils.make_grid(inputs)

imshow(out, title=[class_names[x] for x in classes])

def train_model(model, criterion, optimizer, scheduler, num_epochs=25):
    since = time.time()

    best_model_wts = copy.deepcopy(model.state_dict())
    best_acc = 0.0

    for epoch in range(num_epochs):
        print('Epoch {}/{}'.format(epoch, num_epochs - 1))
        print('-' * 10)

        # Each epoch has a training and validation phase
        for phase in ['train', 'val']:
            if phase == 'train':
                model.train()  # Set model to training mode
            else:
                model.eval()   # Set model to evaluate mode

            running_loss = 0.0
            running_corrects = 0

            # Iterate over data.
            for inputs, labels in dataloaders[phase]:
                inputs = inputs.to(device)
                labels = labels.to(device)

                # forward
                # track history if only in train
                with torch.set_grad_enabled(phase == 'train'):
                    outputs = model(inputs)
                    _, preds = torch.max(outputs, 1)
                    loss = criterion(outputs, labels)

                    # backward + optimize only if in training phase
                    if phase == 'train':
                        optimizer.zero_grad()
                        loss.backward()
                        optimizer.step()

                # statistics
                running_loss += loss.item() * inputs.size(0)
                running_corrects += torch.sum(preds == labels.data)

            if phase == 'train':
                scheduler.step()

            epoch_loss = running_loss / dataset_sizes[phase]
            epoch_acc = running_corrects.double() / dataset_sizes[phase]

            print('{} Loss: {:.4f} Acc: {:.4f}'.format(
                phase, epoch_loss, epoch_acc))

            # deep copy the model
            if phase == 'val' and epoch_acc > best_acc:
                best_acc = epoch_acc
                best_model_wts = copy.deepcopy(model.state_dict())

        print()

    time_elapsed = time.time() - since
    print('Training complete in {:.0f}m {:.0f}s'.format(
        time_elapsed // 60, time_elapsed % 60))
    print('Best val Acc: {:4f}'.format(best_acc))

    # load best model weights
    model.load_state_dict(best_model_wts)
    return model


#### Finetuning the convnet ####
# Load a pretrained model and reset final fully connected layer.

model = models.resnet18(pretrained=True)
num_ftrs = model.fc.in_features
# Here the size of each output sample is set to 2.
# Alternatively, it can be generalized to nn.Linear(num_ftrs, len(class_names)).
model.fc = nn.Linear(num_ftrs, 2)

model = model.to(device)

criterion = nn.CrossEntropyLoss()

# Observe that all parameters are being optimized
optimizer = optim.SGD(model.parameters(), lr=0.001)

# StepLR Decays the learning rate of each parameter group by gamma every step_size epochs
# Decay LR by a factor of 0.1 every 7 epochs
# Learning rate scheduling should be applied after optimizer’s update
# e.g., you should write your code this way:
# for epoch in range(100):
#     train(...)
#     validate(...)
#     scheduler.step()

step_lr_scheduler = lr_scheduler.StepLR(optimizer_ft, step_size=7, gamma=0.1)

model = train_model(model, criterion, optimizer, step_lr_scheduler, num_epochs=25)


#### ConvNet as fixed feature extractor ####
# Here, we need to freeze all the network except the final layer.
# We need to set requires_grad == False to freeze the parameters so that the gradients are not computed in backward()
model_conv = torchvision.models.resnet18(pretrained=True)
for param in model_conv.parameters():
    param.requires_grad = False

# Parameters of newly constructed modules have requires_grad=True by default
num_ftrs = model_conv.fc.in_features
model_conv.fc = nn.Linear(num_ftrs, 2)

model_conv = model_conv.to(device)

criterion = nn.CrossEntropyLoss()

# Observe that only parameters of final layer are being optimized as
# opposed to before.
optimizer_conv = optim.SGD(model_conv.fc.parameters(), lr=0.001, momentum=0.9)

# Decay LR by a factor of 0.1 every 7 epochs
exp_lr_scheduler = lr_scheduler.StepLR(optimizer_conv, step_size=7, gamma=0.1)

model_conv = train_model(model_conv, criterion, optimizer_conv,
                         exp_lr_scheduler, num_epochs=25)

FREE VS Code / PyCharm Extensions I Use

✅ Write cleaner code with Sourcery, instant refactoring suggestions: Link*


PySaaS: The Pure Python SaaS Starter Kit

🚀 Build a software business faster with pure Python: Link*

* These are affiliate link. By clicking on it you will not have any additional costs. Instead, you will support my project. Thank you! 🙏