Back to course overview

## KNN (K Nearest Neighbors) in Python - ML From Scratch 01

In this Machine Learning from Scratch Tutorial, we are going to implement the K Nearest Neighbors (KNN) algorithm, using only built-in Python modules and numpy. We will also learn about the concept and the math behind this popular ML algorithm.

All algorithms from this course can be found on GitHub together with example tests.

## Implementation

``````import numpy as np
from collections import Counter

def euclidean_distance(x1, x2):
return np.sqrt(np.sum((x1 - x2)**2))

class KNN:

def __init__(self, k=3):
self.k = k

def fit(self, X, y):
self.X_train = X
self.y_train = y

def predict(self, X):
y_pred = [self._predict(x) for x in X]
return np.array(y_pred)

def _predict(self, x):
# Compute distances between x and all examples in the training set
distances = [euclidean_distance(x, x_train) for x_train in self.X_train]
# Sort by distance and return indices of the first k neighbors
k_idx = np.argsort(distances)[:self.k]
# Extract the labels of the k nearest neighbor training samples
k_neighbor_labels = [self.y_train[i] for i in k_idx]
# return the most common class label
most_common = Counter(k_neighbor_labels).most_common(1)
return most_common
``````

## FREE VS Code / PyCharm Extensions I Use

🪁 Code faster with Kite, AI-powered autocomplete: Link *

✅ Write cleaner code with Sourcery, instant refactoring suggestions: Link *

* These are affiliate links. By clicking on it you will not have any additional costs, instead you will support me and my project. Thank you! 🙏